• news

Factory Promotional 1k101 Strip - Fe-Based 1K107 Nanocrystalline Ribbon – Malio


Product Detail

Product Tags

Related Video

Feedback (2)

We have our own product sales staff, style crew, technical group, QC staff and package staff. We now have strict high quality management procedures for each approach. Also, all of our workers are experienced in printing subject for Cmc, Power Transformer, Pcb Relay, Good quality and aggressive prices make our products get pleasure from a significant name all around the word.
Factory Promotional 1k101 Strip - Fe-Based 1K107 Nanocrystalline Ribbon – Malio Detail:

Description

Product Name Fe-Based 1K107 Nanocrystalline Ribbon
P/N MLNR-2132
Width 5-65mm
Thickness 26-34μm
Saturation magnetic induction 1.25  Bs (T)
Coercivity  1.5  Hc (A/m)
Resistivity 1.20 (μΩ·m )
Magnetostriction coefficient 1 λs (ppm)
Curie temperature 570  Tc (℃)
Crystallization temperature 500  Tx (℃)
Density 7.2 ρ (g/cm3)
Hardness 880
Thermal expansion coefficient 7.6

Application

● Switching power supply transformers and pulse transformer cores

● Power transformers, precision current transformer cores

● Leakage protection switch transformer iron core

● Filter inductors, energy storage inductors, reactor cores

● EMC common mode and differential mode inductor core

● Saturation reactors, magnetic amplifiers, spike suppressor cores and magnetic beads

Features

Fe-based Nanocrystalline materials are superior to conventional materials and will be the best solution for your application (Figure 1.1).

3

Figure 1.1 μr versus Bs of different soft magnetic materials

● High saturation magnetic induction (1.25 T) and high magnetic permeability (>80,000) for small volumes and high precision

● Core loss equivalent to 1/5 of iron-based amorphous, with losses as low as 70 W/kg at 100 kHZ, 300 mT

● Saturation magnetostriction coefficient close to 0, with very low operating noise

● Excellent temperature stability, <10% change in material properties over the temperature range -50 to 120 °C

● Excellent frequency characteristics with excellent permeability and low losses over a wide frequency range

● With adjustable magnetic properties, different types of magnetic properties can be obtained by applying different transverse and vertical magnetic fields, or without magnetic field heat treatment, such as low remanence, high rectangular ratio, and high magnetic permeability

Material comparison

Performance Comparison of Fe-based Nanocrystalline Ribbon with Ferrite Core

Basic parameters

Nanocrystalline Ribbon

Ferrite Core
Saturation magnetic induction Bs (T)

1.25

0.5

Residual magnetic induction Br (T)(20KHz) <0.2 0.2
Core losses   (20KHz/0.2T)(W/kg) <3.4 7.5
Core losses   (20KHz/0.5T)(W/kg) <35 Cannot be used
Core losses   (50KHz/0.3T)(W/kg) <40 Cannot be used
Magnetic Conductivity (20KHz) (Gs/Oe) >20000 2000
Coercive force Hc (A/m) <2.0 6
Resistivity (mW-cm) <2 4
Saturated magnetostriction coefficient(X10-6 400 740
Resistivity(mW-cm) 80 106
Curie Temperature >0.7 -

1
2
3
4
5
6
7
8
9


Product detail pictures:


Related Product Guide:

go on to boost, to be certain item quality in line with market and buyer standard demands. Our firm has a excellent assurance procedure happen to be established for Factory Promotional 1k101 Strip - Fe-Based 1K107 Nanocrystalline Ribbon – Malio , The product will supply to all over the world, such as: Plymouth, Brunei, Zimbabwe, We'd like to invite customers from abroad to discuss business with us. We can provide our clients with high quality products and excellent service. We are sure that we will have good cooperative relationships and make a brilliant future for both parties.
Good quality and fast delivery, it's very nice. Some products have a little bit problem, but the supplier replaced timely, overall, we are satisfied.
5 Stars By Rebecca from Romania - 2018.12.25 12:43
The factory technical staff not only have high level of technology, their English level is also very good, this is a great help to technology communication.
5 Stars By Natalie from Netherlands - 2017.10.23 10:29
Write your message here and send it to us